3. 初始化堆栈 因为ARM有7种执行状态,每一种状态的堆栈指针寄存器(SP)都是独立的。因此,对程序中需要用到的每一种模式都要给SP定义一个堆栈地址。方法是改变状态寄存器内的状态位,使处理器切换到不同的状态,让后给SP赋值。注意:不要切换到User模式进行User模式的堆栈设置,因为进入User模式后就不能再操作CPSR回到别的模式了,可能会对接下去的程序执行造成影响。 这是一段堆栈初始化的代码示例,其中只定义了三种模式的SP指针: MRS R0,CPSR BIC R0,R0,#MODEMASK 安全起见,屏蔽模式位以外的其他位 ORR R1,R0,#IRQMODE MSR CPSR_cxfs,R1 LDR SP,=UndefStack ORR R1,R0,#FIQMODE MSR CPSR_cxsf,R1 LDR SP,=FIQStack ORR R1,R0,#SVCMODE MSR CPSR_cxsf,R1 LDR SP,=SVCStack 4. 初始化有特殊要求的端口,设备 5. 初始化应用程序执行环境 映像一开始总是存储在ROM/Flash里面的,其RO部分即可以在ROM/Flash里面执行,也可以转移到速度更快的RAM中执行;而RW和ZI这两部分是必须转移到可写的RAM里去。所谓应用程序执行环境的初始化,就是完成必要的从ROM到RAM的数据传输和内容清零。 下面是在ADS下,一种常用存储器模型的直接实现: LDR r0,=|Image$$RO$$Limit| ;得到RW数据源的起始地址 LDR r1,=|Image$$RW$$Base| ;RW区在RAM里的执行区起始地址 LDR r2,=|Image$$ZI$$Base| ;ZI区在RAM里面的起始地址 CMP r0,r1 ;比较它们是否相等 BEQ %F1 0 CMP r1,r3 LDRCC r2,[r0],#4 STRCC r2,[r1],#4 BCC %B0 1 LDR r1,=|Image$$ZI$$Limit| MOV r2,#0 2 CMP r3,r1 STRCC r2,[r3],#4 BCC %B2 程序实现了RW数据的拷贝和ZI区域的清零功能。其中引用到的4个符号是由链接器第一输出的。 |Image$$RO$$Limit|:表示RO区末地址后面的地址,即RW数据源的起始地址 |Image$$RW$$Base|:RW区在RAM里的执行区起始地址,也就是编译器选项RW_Base指定的地址 |Image$$ZI$$Base|:ZI区在RAM里面的起始地址 |Image$$ZI$$Limit|:ZI区在RAM里面的结束地址后面的一个地址 程序先把ROM里|Image$$RO$$Limt|开始的RW初始数据拷贝到RAM里面|Image$$RW$$Base|开始的地址,当RAM这边的目标地址到达|Image$$ZI$$Base|后就表示RW区的结束和ZI区的开始,接下去就对这片ZI区进行清零操作,直到遇到结束地址|Image$$ZI$$Limit| 6. 改变处理器模式 因为在初始化过程中,许多操作需要在特权模式下才能进行(比如对CPSR的修改),所以要特别注意不能过早的进入用户模式。 内核级的中断使能也可以考虑在这一步进行。如果系统中另外存在一个专门的中断控制器,这么做总是安全的。 7. 呼叫主应用程序 当所有的系统初始化工作完成之后,就需要把程序流程转入主应用程序。最简单的一种情况是: IMPORT main B main 直接从启动代码跳转到应用程序的主函数入口,当然主函数名字可以由用户随便定义。 在ARM ADS环境中,还另外提供了一套系统级的呼叫机制。 IMPORT __main B __main __main()是编译系统提供的一个函数,负责完成库函数的初始化和初始化应用程序执行环境,最后自动跳转到main()函数。 |