首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
FPGA/CPLD可编程逻辑
» 异步DSP核心设计方略:更低功耗,更高性能
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
异步DSP核心设计方略:更低功耗,更高性能
发短消息
加为好友
pengpengpang
(pengpengpang)
当前离线
UID
1023229
帖子
6106
精华
0
积分
3055
阅读权限
90
来自
中国
在线时间
156 小时
注册时间
2013-12-20
最后登录
2016-7-3
论坛元老
UID
1023229
来自
中国
1
#
打印
字体大小:
t
T
pengpengpang
发表于 2015-6-30 16:38
|
只看该作者
异步DSP核心设计方略:更低功耗,更高性能
集成电路
,
处理器
,
产品
,
技术
,
前台
目前,处理器性能的主要衡量指标是时钟频率。绝大多数的集成电路 (IC) 设计都基于同步架构,而同步架构都采用全球一致的时钟。这种架构非常普及,许多人认为它也是数字电路设计的唯一途径。然而,有一种截然不同的设计技术即将走上前台:异步设计。
这一新技术的主要推动力来自硅技术的发展状况。随着硅产品的结构缩小到 90 纳米以内,降低功耗就已成为首要事务。异步设计具有功耗低、电路更可靠等优点,被看作是满足这一需要的途径。
异步技术由于诸多原因曾经备受冷落,其中最重要的是缺乏标准化的工具流。IC 设计团队面临着巨大的压力,包括快速地交付设备,使用高级编程语言和标准的事件驱动架构 (EDA) 工具,帮助实施合成、定时和验证等任务。如果异步设计可以使用此类工具,那么可以预计将会出现更多采用异步逻辑组件的设备。
在过去,小型异步电路仅用作同步电路的补充。仅仅在最近,新发布的商用设备才主要基于异步设计。但是此类设备主要针对小众市场,如要求超低功耗和稳定电流的嵌入式感应器。
我们正在见证一款完全基于异步逻辑的通用数字信号处理器 (DSP) 核心横空出世。无论是 IC 设计人员还是最终用户,它带来的好处数不胜数。
同步与异步
目前的数字设计事实上采用的是同步设计技术。由于历史原因,这种方法得到了改良,设计工具也不断演化。目前有一种标准流以高级语言为基础,可实现快速开发。同步设计还可以轻松地扩展设备性能。设计人员只须提高时钟频率,就能使设计变得更快。
同步法包括建立功能模块,每个模块由一个按时钟信号控制的有限状态机 (FSM) 驱动。触发器被用于存储当前状态。当接收到时钟信号时,触发器将更新所存储的值。
在 DSP 的设计过程中,逻辑阶段必不可少。这些阶段实施操作并将结果传递到下一阶段。下图表示单个阶段的简单模型。异步逻辑用于在两个触发器之间计算电路的新状态。例如,该逻辑云可执行加法或乘法。
对于异步 DSP 核心,逻辑阶段被调整以消除时钟。下图显示了这种 DSP 架构的基本构造。不是由时钟控制门闩线路,而实际上是传递了一个完成信号给下一逻辑阶段。根据逻辑云所执行的操作,在恰当时候可生成完成信号。
这种本地延迟控制可以保证电路的稳定。由于控制电路时间的逻辑就在本地,它就可以相应地改变电压、处理速度和温度。
异步设计有许多种不同的途径,而前提是电路不受单一时钟控制。多数情况下,异步逻辑被用于通过专门的电路设计来解决具体问题。但是,异步逻辑也可用作完整 DSP 核心的基础,而不仅仅是设计中偶尔需要的一种工具。其好处包括降低功耗、可靠性提高以及电磁干扰 (EMI) 低。
异步设计的好处
采用异步设计的理由非常吸引人。在正确使用中,这种方法可以实现更低的能耗、更好的 EMI 性能;由于消除了全球时钟偏差,真正地简化了设计。
功耗更低:与同步 DSP 核心相比,异步 DSP 最重要的好处就是功耗更低。事实上,这种异步核心的能效数量级高于最好的同步 DSP。
随着硅产品尺寸的缩小,功耗问题越来越重要。由于线路长度为线性而面积为平方,单位面积硅功耗将随着尺寸的缩减而增加。目前,通过降低电压,数字设计人员已经成功地解决了这个问题;但由于电压阈值的限制,目前的半导体技术无法再有效地降低电压。要想有效地利用新增加的功能,必须降低各个功能的功耗。
在 CMOS 技术中,门电路切换状态时将消耗能量。在同步电路中,时钟需要进行多次切换,从而造成功耗。在设备或者设备的分区中分配时钟需要时钟缓冲器。时钟缓冲器必须足够大,以确保最大限度降低时钟偏差。换言之,电路中的所有点必须同时接受时钟变换。时钟分配通常被称为时钟树(Clock Tree),一般会消耗几乎一半的总系统能量。树底部的时钟缓冲器具有相当大的扇出量和很大的体积,因此功耗较高。
目前开发有多种技术消除切换逻辑的能耗,如时钟门控。迄今为止,这些技术都无法实现异步设计的更低功耗。
时钟门控对于异步电路来说并非必备。实际上,异步电路仅在执行有效操作时耗能。换言之,无需增加电路的情况下,异步电路的功耗将根据所提供的性能相应地增加。这意味着,不需要更多调整,这种设备就拥有低待机电流,其功耗也将随实际提供的性能而增加。
切换性能更出色:除了功耗更低外,含有异步逻辑的设备还将拥有极低的 EMI。无论是 IC 设计人员还是最终用户,它带来的好处数不胜数。
全球或当地时钟是影响 EMI 的一个最大因素。由于同步电路中的全球时钟需要同时随处进行切换,因此同步设备所发出的 EMI 在特定频率时将拥有相当明显的峰值。
高速设备所发出的 EMI 噪音将进入 PCB 的电源层。随后该噪音将出现在外部 I/O 或布线中,在线缆中引起多余且通常超标的辐射。第一道防线采用解耦电容,而更昂贵的屏蔽或共模扼流线圈将用作最后一道防线。
电源层上的 EMI 也使得电源的设计更加复杂。对于高速运转的同步电路,电源必须经过过滤或过量储备,以符合电源层上所产生的电压尖脉冲。
这些噪音和电源问题加在一起,增加了设计人员的设计难度,尤其在特定设计中使用大量高速 DSP 时。通过消除对于全球同步时钟的需要,异步逻辑设计可以减轻或解决这些问题。可以显著地降低 EMI,使 PCB 设计更简单并提高系统的可靠性。异步电路电源波纹的缺失相当引人注目,它表明可以获得更好的切换性能。
下列图显示了同步和异步 DSP 电源噪音之间的典型差异。这些图是示波器的屏幕截图,测量了高性能 DSP 在电源层上产生的噪音。
在 IC 设计人员眼中,更出色的切换性能代表更可靠的电路。电路同时发生大规模切换时,将产生非常大的瞬时电流。在设备的电网上显示为 IR 降。这意味着电网的某一区域在此时的电压较低。这是意料之中的正常情况,通常都通过设计验证来确保电网能承受预计的最大电压下降。有时这也是一种限制因素,妨碍设计人员在逻辑的特定区域进行进一步设计。
消除时钟偏差:采用异步设计还有很多原因。低于 90 纳米的硅片是生产的趋势。这可以从硅制造商大力投入以纠正一系列问题上得以证明。他们已着手开发干涉计量学(Interferometric Metrology)等高级技术,尽量使光罩的最小特征尺寸小于当前的曝光波长。
由于这些变量会提高设备的偏差量,因此在过程中控制它们非常重要。
时钟偏差被定义为时钟信号到达电路中不同点的时间差。
由于相同时钟上的所有逻辑必须有序地运行,因此时钟偏差必须保持在最低水平,以确保电路正确运行。设备的时钟频率越高,可允许的偏差越小。
随着特征尺寸的减少,时钟偏差的问题将更加严重。相比以前,特定晶片中将分为“慢速”芯片和“快速”芯片;由于密度大幅增加,单个芯片中的变量也将有所体现。这种状况的性质对于大型单片同步设备意义非常重大。
采用异步 DSP 核心可避免此类问题。DSP 核心基于小型自计时电路。因此所有定时对于该逻辑块相关的小区域都是本地的。
稳定性更高:半导体主要受三大物理属性影响:制作流程速度、电源电压电平和温度。如果这些特征发生任何变化,将造成晶体管运转更快或更慢的情况。
同步电路必须在上述参数的最佳和最差状态值下进行静态时序分析(static timing analysis),以确保设备工作正常。换而言之,同步电路有一个可以使电路停止工作的“切断点”。
由于异步电路是自计时电路,因此它们在物理特征变化时只须加速或减速。因为控制自计时的逻辑与处理逻辑处于相同区域,所以温度和电压等环境变化都会对两者造成影响。所以,异步电路针对抵抗动态电压下降等瞬时变化的抗影响性能更好,还将根据长期温度和电压变化进行自动调整。
横空出世:通用异步 DSP
由于成功采用异步设计技术的各种设备不断出现,异步设计正受到越来越多的关注。异步逻辑的优点众所周知。包括低功耗和更稳定的设计等等。
直到最近,异步电路仅仅在非常必要时才使用。由于学术界的偏见,它们通常被视为边缘产品。现在,许多商用设备已经开发了上述针对各类小众市场的功能。
完全基于异步逻辑的通用 DSP 核心的出现表明,现有的工具、技术和知识创造的商用产品可应用于更大的客户群体。更吸引人的是,该设备可与任何现有 DSP 一样进行同样的编程和操作。也就是说,这个解决方案在丝毫不影响可用性的基础上,实现了异步技术的所有优点。
关于 Ocastic
Octasic Inc. 成立于 1998 年,总部在加拿大魁北克省蒙特利尔,是一家面向融合电信运营商、企业和终端通信设备市场提供完整的硅和软件解决方案的全球提供商。在功能、密度、成本和功耗等方面,Octasic 质量优异的可扩展语音、视频和数据解决方案为下一代制造商带来了最好的灵活性和无与伦比的性能。如欲了解详细信息,请访问
www.octasic.com
。
关于作者:
James Awad,Octasic 产品市场推广经理
James Awad 是 Octasic 半导体部的一名产品市场推广经理,在电信行业具有九年以上的从业经验。他在康考迪亚大学蒙特利尔分校获得学士学位,在针对语音数据包网络的 ASIC 设计和系统架构方面有较深造诣。供职于 Octasic 期间,他在回声消除和语音质量方面进行了深入钻研。
收藏
分享
评分
记录学习中的点点滴滴,让每一天过的更加有意义!
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议