首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

CPU与内存的那些事

CPU与内存的那些事

本文以一个现代的、实际的个人电脑为对象,分析其中CPUIntel Core 2 Duo 3.0GHz)以及各类子系统的运行速度——延迟和数据吞吐量。通过粗略的估算PC各个组件的相对运行速度,希望能给大家留下一个比较直观的印象。本文中的数据来自实际应用,而非理论最大值。时间的单位是纳秒(ns,十亿分之一秒),毫秒(ms,千分之一秒),和秒(s)。吞吐量的单位是兆字节(MB)和千兆字节(GB)。让我们先从CPU和内存开始,下图是北桥部分:       



       第一个令人惊叹的事实是:CPU快得离谱。在Core 2 3.0GHz上,大部分简单指令的执行只需要一个时钟周期,也就是1/3纳秒。即使是真空中传播的光,在这段时间内也只能走10厘米(约4英寸)。把上述事实记在心中是有好处的。当你要对程序做优化的时候就会想到,执行指令的开销对于当今的CPU而言是多么的微不足道。    
    CPU运转起来以后,它便会通过L1 cacheL2 cache对系统中的主存进行读写访问。cache使用的是静态存储器(SRAM)。相对于系统主存中使用的动态存储器(DRAM),cache读写速度快得多、造价也高昂得多。cache一般被放置在CPU芯片的内部,加之使用昂贵高速的存储器,使其给CPU带来的延迟非常低。在指令层次上的优化(instruction-level optimization),其效果是与优化后代码的大小息息相关。由于使用了高速缓存技术(caching),那些能够整体放入L1/L2 cache中的代码,和那些在运行时需要不断调入/调出(marshall into/out ofcache的代码,在性能上会产生非常明显的差异。
       正常情况下,当CPU操作一块内存区域时,其中的信息要么已经保存在L1/L2 cache,要么就需要将之从系统主存中调入cache,然后再处理。如果是后一种情况,我们就碰到了第一个瓶颈,一个大约250个时钟周期的延迟。在此期间如果CPU没有其他事情要做,则往往是处在停机状态的(stall)。为了给大家一个直观的印象,我们把CPU的一个时钟周期看作一秒。那么,从L1 cache读取信息就好像是拿起桌上的一张草稿纸(3秒);从L2 cache读取信息则是从身边的书架上取出一本书(14秒);而从主存中读取信息则相当于走到办公楼下去买个零食(4分钟)。
       主存操作的准确延迟是不固定的,与具体的应用以及其他许多因素有关。比如,它依赖于列选通延迟(CAS)以及内存条的型号,它还依赖于CPU指令预取的成功率。指令预取可以根据当前执行的代码来猜测主存中哪些部分即将被使用,从而提前将这些信息载入cache
       看看L1/L2 cache的性能,再对比主存,就会发现:配置更大的cache或者编写能更好的利用cache的应用程序,会使系统的性能得到多么显著的提高。如果想进一步了解有关内存的诸多信息,读者可以参阅Ulrich Drepper所写的一篇经典文章《What Every Programmer Should Know About Memory》。
       人们通常把CPU与内存之间的瓶颈叫做冯·诺依曼瓶颈von Neumann bottleneck)。当今系统的前端总线带宽约为10GB/s,看起来很令人满意。在这个速度下,你可以在1秒内从内存中读取8GB的信息,或者10纳秒内读取100
节。遗憾的是,这个吞吐量只是理论最大值(图中其他数据为实际值),而且是根本不可能达到的,因为主存控制电路会引入延迟。在做内存访问时,会遇到很多零
散的等待周期。比如电平协议要求,在选通一行、选通一列、取到可靠的数据之前,需要有一定的信号稳定时间。由于主存中使用电容来存储信息,为了防止因自然
放电而导致的信息丢失,就需要周期性的刷新它所存储的内容,这也带来额外的等待时间。某些连续的内存访问方式可能会比较高效,但仍然具有延时。而那些随机
的内存访问则消耗更多时间。所以延迟是不可避免的。

  
  图中下方的南桥连接了很多其他总线(如:PCI-E, USB)和外围设备:
  
  
继承事业,薪火相传
返回列表