|
用数字电位器替代机械式电位器(下) |
Digital Potentiometers-The Reliable Alternative
|
■ 微芯公司混合信号应用工程经理 Bonnie C. Baker
|
偏置调节电路
在模拟电路中,可通过简单分压器或完全可调参考电压,向信号路径加电压来进行偏置调节。在图8和图9中,用数字电位器改变简单放大器电路中的偏置误差。
其中,放大器配置为反相。输入信号VIN的 传递函数为:
VOUT = -VIN(R2/R1) + VDD/2
采用图5.b.中同样的分压器来施加偏置电压。偏置电压 VOFF的传递函数为:
VOUT = - VOFF (R2/R3)
采用图8所示电阻值,对 VIN的增益为10V/V,VOFF的增益为0.1V/V。如果VDD = 5V,则偏置调节电路的LSB大小为
651 V。
用这种配置时,由数字电位器产生的、以及由温度变化引起的误差和额定误差,不及图5b中所讨论的十分之一。用数字电位器实现模拟偏置调节的另一种方法如图9所示。其中,信号增益为:
VOUT = - VIN(R2/R1)
偏置调节电路的增益等于:
VOUT = VDDRPOT-B(1+R2/R1)/(RPOT-AB+R2+R3)
图8和图9中使用的偏置调节电路与图5b中的电路拓扑相同,因此,这种偏置配置引起的误差相似。
增益调节放大器电路
电路增益误差可能影响电路的模拟动态范围。使用单片机很容易以数字方式计算出系统中的这些误差。但是,模拟动态范围从来没有得到充分利用。因此,在需要完全模拟动态范围的地方,进行模拟增益调节。具有可调正增益(非反相)的放大器电路如图10示例。其中,传递函数为:
VOUT = VIN (1 + R3/R2)(RPOT1-B/(RPOT1-AB)
可调增益通过数字电位器RPOT来实现,具有较高额定值的数字电位器适合此电路。在此电路中,阻值较高的电阻可将VIN源阻抗引入的误差减至最小。
此电路最大增益为:
Gain (max) = (1 + R3/R2) - (2n -1)/2n
使用图10中的电阻值:
Gain (max) = (1 + 100kW/1kW) - (28 - 1)/28
= 101.996V/V
在室温条件下,当增益低于整个范围的10%时(假设DNL(max) = 0.4% 或 0.25LSB),数字电位器的DNL误差影响电路增益的精度,参见图11所示。
图8 (略)
图9 (略)
图10 有可调非反相增益放大器的电路设计(略)
图11 (略)
图12 此放大器电路使用数字电位器来实现可调反相增益(略)
图13 (略)
根据温度对这种配置数字电位器的影响,RA和RB温度变化率的典型值为800ppm/ C。由于这些元件按数学比例配置,故误差得以抵消。
两个元件之间温度变化率的典型值为1%,此温度变化率将直接转化为随温度变化的增益误差。
另一种使用数字电位器的放大器增益电路如图12所示。在此电路中,放大器电路执行反相可调增益功能。电路传递函数为:
VOUT= -VIN(RPOT2-A/R4-B) + VREF(RPOT2-A/RPOT2-B + 1)
增益函数与数字电位器数码之间的关系是非线性的,如图13所示。
此增益单元的额定精度被优化了,因为在电路传递函数中,数字电位器的两端电阻成比例关系。室温下,任何增益误差都是由数字电位器的DNL误差引起的。此误差的最大影响如图13所示。
根据温度对这种配置数字电位器的影响,在传递函数中RA和RB按数学比例配置,这样抵消了电阻元件800ppm/ C 的变化率。两个元件之间温度变化率的典型值为1%。此变化率将直接转化为随温度变化的增益误差。
图10和图12中的电路可组合成为可调增益差分放大器,与图3中所示电路类似。这种配置如图14所示。
如果为RPOT1和RPOT2设置的数码相等,此电路的传递函数为:
VOUT = (V1 - V2)(RPOTx-B/RPOTx-A) + VREF
此电路增益(VOUT/(V1-V2))与数字电位器数码之间的关系如图15所示。
图3所示电路显著改善了电路的温度性能,因为电路中所有电阻都是数字电位器的元件。此外,电路中由于电阻不匹配引起的共模抑制误差为:
CMR = 100*(1 + R1/R2)/(不匹配误差%)
其中 (不匹配误差%) 是等式R1/R2 = R3/R4中的不匹配。
结论
与机械式电位器相比,数字电位器具有明显的优势:其可编程能力允许可靠、实时地进行偏移量、增益和参考电压电路等的改变。数字电位器曾因其部件之间的绝对误差和温度系数等问题受到批评。但是通过采用更巧妙的设计方案,这些缺点就容易克服。
|
|