本文分析了一个小型(6 mm 15 mm)两极、低噪声、无限稳定的放大器设计,用于802.11a、HiperLAN2 和HiSWANa接收机应用。在5.5
GHz时,放大器具有22.2 dB增益、1.4 dB噪声系数、线性输出功率(P-1dB) +11.5 dBm、三阶输出截距点(OIP3)
+28 dBm,频率覆盖目前北美、欧洲和日本无线局域网络规定使用的5 GHz 频谱部分。
北美802.11a: 5.15-5.35 GHz和5.725-5.825 GHz (U-NII 波段);
欧洲 HiperLAN2: 5.15 - 5.35和5.470 - 5.725 GHz;
日本 HiSWANa: 5.15-5.25 GHz。
这个放大器的两极均使用ATF-551M4低噪声增强型赝配HEMT (E-pHEMT)。该器件以无引线表面安装塑料封装形式提供,尺寸为1.4mm
1.2 mm 0.7mm,使用400 m栅宽,在2 10 GHz频率范围内,具有低噪声系数和高截距点。
除了具有非常低的噪声系数(典型值是0.5 dB)之外,在2 GHz 、2.7V偏置下,漏流为10 mA时, ATF-551M4可以提供+24.1
dBm的三阶输出截距点(OIP3)。由于E-pHEMT在单个稳压电源、有源偏置下工作,适用于大批量生产的放大器的设计,仅需要增加一个PNP双极结型晶体管。与使用耗尽型器件的放大器相比,E-pHEMT设计具有更少的元件数目,因此外形更紧凑。
可以从以下网址下载有关ATF-551M4的数据表:
http://literature.agilent.com/litweb/pdf/5988-9006EN.pdf
低噪声E-pHEMT放大器设计
为满足噪声系数和增益的要求,漏源电流(Ids)选为15 mA。从数据表可以看出,这个值可以提供很好的IP3和很低的最小噪声系数(Fmin)。从数据表还可以看到,2.7
V的漏源电压(Vds)可以使增益稍微有所提高,并可以很容易地使用3.3 V稳压电源。
使用安捷伦公司的Eesof高级设计系统软件(ADS),可以在线性和非线性工作模式下对放大器电路进行模拟。线性分析时,可以使用Touchstone格式的两端口S参数文件,对晶体管进行建模。可以从安捷伦无线设计中心网站(http://www.agilent.com/view/rf)下载ATF551M4.s2p文件。除了增益、噪声系数、输入和输出回波损耗信息以外,模拟过程也对电路的稳定性进行研究。通过计算机模拟,可以很容易地计算出Rollett稳定系数(K)并画出稳定性圆。
ADS额定优化(也称作性能优化)工具被用来进行放大器辅助设计。这个工具可以用来修改一组参数值,以满足预定的性能目标。这是通过比较计算的和需要的响应,并修改设计参数值,使计算的响应更接近目标性能而实现的。额定优化可以在ADS的模拟器中找到,使用任何分析类型如AC、DC、S参数、谐波平衡、电路包络和瞬态仿真,进行模拟/RF系统仿真。对4.9
- 6.0 GHz带宽内的增益、噪声系数和回波损耗、带外增益、以及0.1 - 18 GHz内的无限稳定性,设立目标值。一个额定优化的例子,称为optex1_prj,可以在ADS帮助库的第二章调整、优化和统计设计部分获得。
在6 GHz下使用优化工具,必须具有电阻、电感和电容的精确等效电路模型。模型必须包括封装寄生电感、电阻和电容;使用优化工具,允许元件值在很小的范围内改变,并与测量数据准确关联。图1给出了无源元件模型和ADS优化工具拓扑。需要注意的是,每个生产商的无源元件的寄生特性略有不同。
图2给出的演示板,主要为5 6 GHz应用而开发。为硬度起见,这个板是三层结构。信号层是最上面的一层是0.010英寸厚的FR4,介电常数是4.2,第二层和第三层仅是为了增加硬度。板使用小型EIA0402
(.04 x .02 英寸/ 1.0 x 1.5 mm, 额定值)形状因数的表面安装元件。使用微带线代替0402电感,可以降低电路损耗,但会使版图增大。用蓝色标出了电路实际需要的6
mm x15 mm区域。
图1 无源元件模型和ADS优化工具拓扑(略)
图2 两级4.9GHz-6.0GHz E-pHEMT LNA演示板布线图和元件布局(略)
阻抗匹配网络
图3给出了两级放大器的示意图。放大器使用一个带通网络进行输入匹配,一个高通网络进行输出匹配。通过高通网络进行级间匹配。
输入网络是最佳噪声系数和合理输入回波损耗之间的折衷,包括串连电容C1、并联电感L1和并联电容C12。请注意,使用如图所示的演示板布局时,在L1之前的安装垫必须使用铜片进行过渡:使用安装垫的目的是获得低通阻抗匹配网络拓扑。
图3 使用无源偏置的两级放大器示意图(略)
输出高通网络包括一个串连电容C3和一个并联电感L4。带通网络提供额外的低频增益抑制,具有如下几个目的:首先,增强的低频信号抑制会降低LNA对较强低频信号发射的易感性,较强的低频发射会使LNA饱和,对带内性能有不利影响。其次,因为低频增益峰值通常与K值降低有关,低频增益抑制也改进了LNA的稳定性。
由于L1也被用来输入栅压,在额定工作频率下,电感必须由C4适当地旁路掉,这可以增强低频稳定性。如果C4的值太大,L1和C4的串联谐振频率常常会产生低频增益振荡,使用R1和C5很难稳定下来。使用ADS的优化功能,可以选择L1、C4和R1的值,使低频稳定性最佳。C5是10
nF,用来提高输出三阶截距,并在优化过程中保持稳定。
输出高通网络包括一个串连电容C3和一个并联电感L4。由于L4用来给Q2施加漏压,它被C10. R8旁路,C11提供了一个低频电阻终端。
输入网络的主要目的是提供低噪声系数和很好的S11,输出网络的主要目的是提供需要的输出功率和很好的S22,级间网络用来在需要的频段使增益更平坦,降低低频增益,并有助于提高整体稳定性。需要电感为Q1施加漏压,为Q2施加栅压,需要电容为两级之间提供直流隔离,这是高通网络的基础。可以使用ADS、对应于多种参数优化这个网络。
源接地
关于FET源端正确接地的重要性,不用再强调了。尽管器件和信号地之间的距离最短时,通常低频增益最高,可以控制源电感的一部分来降低增益、提高稳定性,并在对噪声系数影响最小的基础上改进S11和S22。对每个源端和电镀通孔之间的微带线的尺寸、微带和信号地之间的电镀通孔尺寸的精确建模,使设计者可以利用ADS来决定最佳源电感。由于源电感通常使FET在高频时再生,在低频时退化,从100
MHz 18 GHz的K因子曲线中,可以找到电路中使用的最佳源电感。
表1:元件列表(略)
无源偏置
建立射频匹配网络之后,下一步是对器件加直流偏置。图3给出了无源偏置的例子。在这个例子中,通过电阻R4和R8的压降设置了漏流(Id),使用下面的公式计算它们的值:
R_{4} & R_{8}=\frac{V_{dd-V_{ds}}}{I_{ds}+I_{bb}} (1)
其中:
Vdd电源电压, 3.3 V;
Vds是器件的漏源电压, 2.7 V;
Vg 是器件的栅源电压,0.515 V;
Ids是器件的漏源电流,15 mA;
Ibb代表直流稳定性,是典型栅流的10倍, 0.1 mA。
使用R2和R3组成的分压网络,建立了典型栅偏压(Vg)。
R_{2} & R_{6}=\frac{V_{g}}{I_{bb}} (2)
R_{2} & R_{6}=\frac{(V_{ds}-V_{g}) R2}{V_{g}} (3)
可以在产品数据表的第10页,找到完整的无源偏置的例子(http://literature.agilent.com/litweb/pdf/5988-9006EN.pdf)。由于使用表1中首选的元件值,在计算值和实际值之间有差异。
结果
在电源电压Vdd =3.3 V下测试放大器,该电源为每个器件提供Vds = 2.7 V和Id= 15 mA的偏置点。图4给出了测量的和模拟的噪声系数。在5.8
GHz时噪声系数的额定值是1.4 dB。输入微带线的损耗是0.15 dB,因此加上匹配网络的损耗后器件的噪声系数大约是1.25
dB。1 dB压缩点(P-1dB)的输出功率是+11.5 dBm。输出三阶截距点(OIP3)是+28 dBm。
在5.8 GHz时,放大器测量的和模拟的增益是额定值22 dB。图5 中的扫频增益曲线表明,在较低频率时,增益有适度的下降。图6和图7分别给出了输入和输出回波损耗的测量和模拟曲线。在4.9-
6.0 GHz频带内,测量的输入回波损耗大于15 dB,输出回波损耗大于9.5 dB。
图4 测试的和模拟的噪声系统相对于频率的曲线(略)
图5 测试的和模拟的增益相对于频率的曲线(略)
图6 测试的和模拟的输入回波损耗相对于频率的曲线(略)
图6 测试的和模拟的输出回波损耗相对于频率的曲线(略)
|